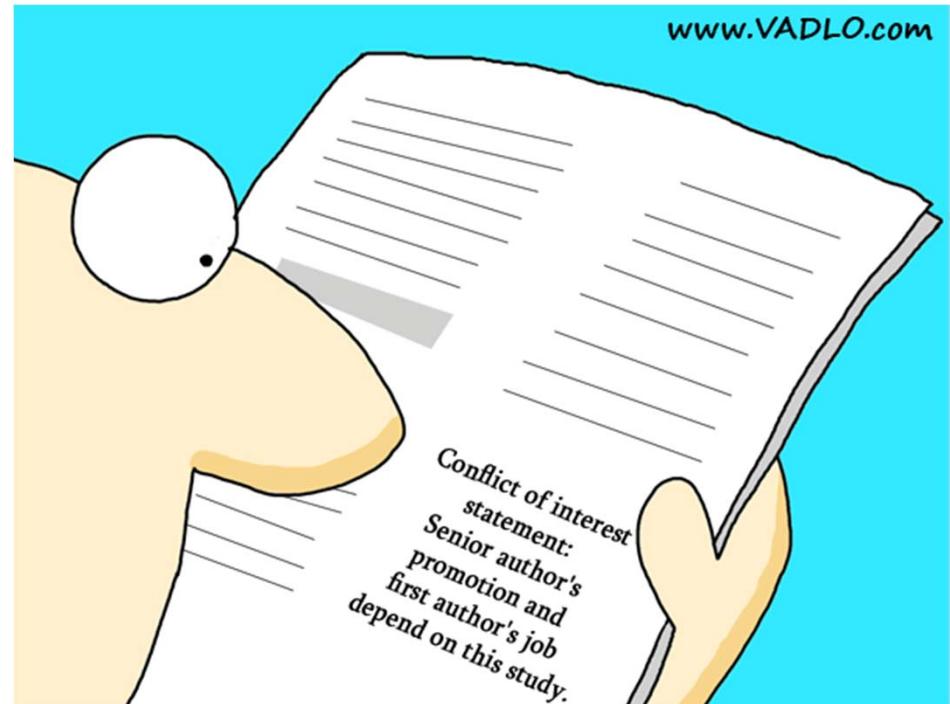




# (Eco)toxicology of PFAS: A few highlights


Jamie DeWitt, PhD, DABT  
Department of Pharmacology & Toxicology  
Brody School of Medicine  
East Carolina University  
Greenville, NC  
[dewittj@ecu.edu](mailto:dewittj@ecu.edu)

*Europe's PFAS problem: situation briefings by independent experts*  
Session 2 Webinar: September 14, 2020

## Conflict of Interest Statement:

I currently am funded to study immune system effects of PFAS.

I have spoken publicly about my understanding of PFAS toxicity, serve/have served as a plaintiff's expert witness, and advocate for the need to protect the public from their exposures to PFAS.



# PFAS – quick reminders

Fluoropolymers

Example PFAS Product Applications

MEDICAL DEVICES

AUTOMOTIVE FUEL LINES

CABLE INSULATION

ELECTRONICS

NON-STICK COOKWARE

FUEL CELLS

MEDICAL GARMENTS

FIRST RESPONDER GEAR

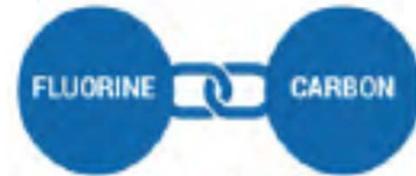
CARPET

CLASS B FIRE FIGHTING FOAM

FOOD PACKAGING

OUTDOOR PERFORMANCE APPAREL

UPHOLSTERY


PAINTS/COATINGS

4

## PFAS

- A class of >4,000 substances
- Produced and used since 1940s
- Chemical properties that make them useful in a wide range of applications, especially as surfactants and surface protectors

# PFAS – quick reminders



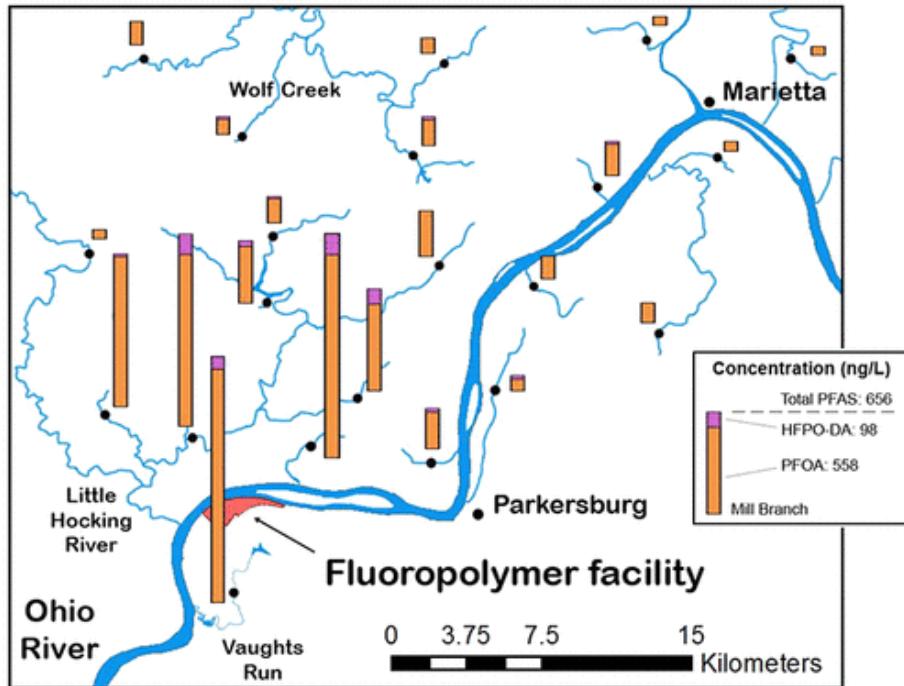
*“The use and manipulation of this bond gives FluoroTechnology its distinct properties of strength, durability, heat resistance and stability.”*

But also...

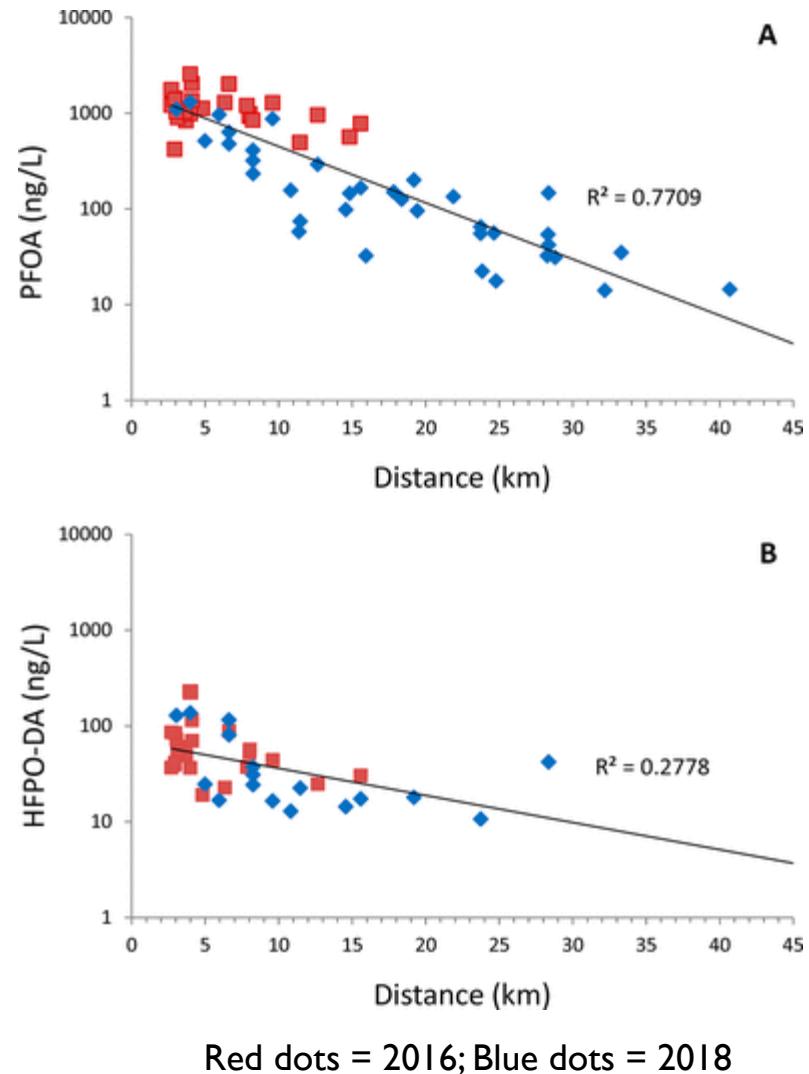
- Persistence
- Bioaccumulation potential
- Mobility (some)
- Toxicity (those studied)

## PFAS persistence in perspective

| <b>TABLE 17.2</b>                       |                                  | <b>The persistence of various chemicals in the environment, measured in terms of their half-life</b> |
|-----------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------|
| <b>Chemical</b>                         | <b>Half-life</b>                 |                                                                                                      |
| <b>Malathion insecticide</b>            | <b>1 day</b>                     |                                                                                                      |
| <b>Radon</b>                            | <b>4 days in air</b>             |                                                                                                      |
| <b>Vinyl chloride</b>                   | <b>4.5 days in air</b>           |                                                                                                      |
| <b>Phthalates</b>                       | <b>4.5 days in water</b>         |                                                                                                      |
| <b>Roundup herbicide</b>                | <b>7 to 70 days in water</b>     |                                                                                                      |
| <b>Atrazine herbicide</b>               | <b>224 days in wetland soils</b> |                                                                                                      |
| <b>Polychlorinated biphenyls (PCBs)</b> | <b>8 to 15 years in water</b>    |                                                                                                      |
| <b>DDT</b>                              | <b>30 years in soil</b>          |                                                                                                      |


**Source:** Hazardous Substances Data Bank, <http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB/>.

**Table 17.2**  
*Environmental Science*  
© 2012 W. H. Freeman and Company


**PFAS**

**>30 years? >100 years?**

# PFAS mobility is not limited to short-chains



Galloway et al. (2020) demonstrated that atmospheric transport of both PFOA and HFPO-DA (“GenX”) has occurred from a point source and *that the boundaries of the impact zone have not yet been fully delineated.*



Red dots = 2016; Blue dots = 2018

Image source: Galloway et al. 2020.

# PFAS exposure sources and pathways

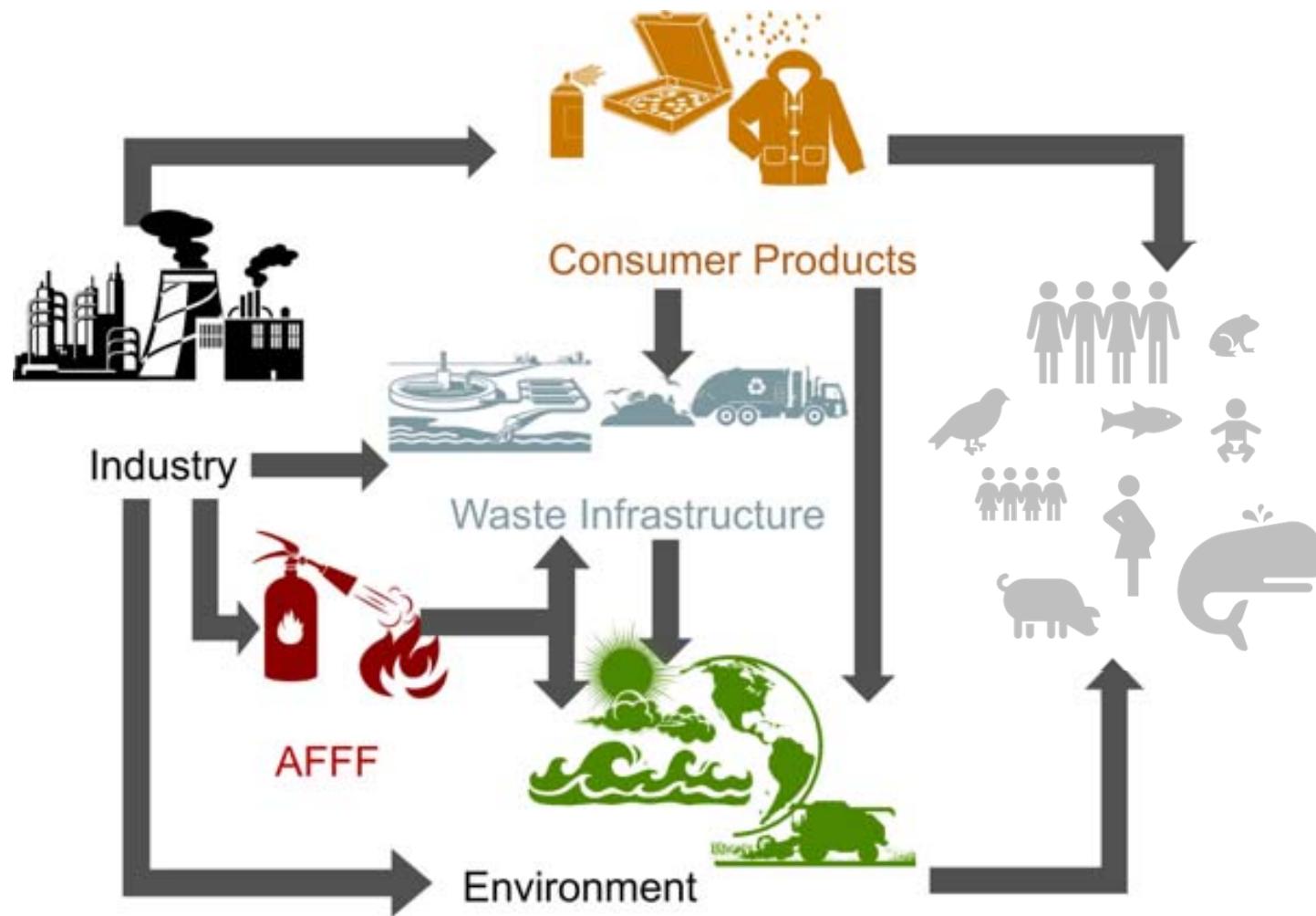



Image modified from: Sunderland et al. 2018.

## PFAS accumulation in wildlife

### Vertebrate wildlife [max PFOS]



Up to 3073 ng/mL in plasma of **Bottlenose dolphin**

Up to 1325 ng/g in liver of **polar bear**

Up to 96.8 ng/mL in plasma of **Loggerhead sea turtle**

Up to 450 ng/mL in plasma of **Herring gulls**



Up to 176 ng/mL in plasma of **rockfish**

(DeWitt et al., 2012)



Images from various sources.

## PFAS accumulation in wildlife

### Invertebrate wildlife

0.1 – 10 mg/kg PFOA and PFOS in marine and freshwater invertebrate tissue  
(Houde et al., 2011)

Up to 280 mg/kg of PFOS, PFCAs, and PFOSA in invertebrates from Lake Ontario (Martin et al., 2004)

Accumulation in soil invertebrates (i.e., earthworms) appears to be low.



## PFAS accumulation in humans

### **PFOA and PFOS in human serum**

On average, serum concentrations of PFOA and PFOS in general populations from the US and European countries appear to be below 10 ng/mL (CDC & EFSA).

However, people living in areas with point sources and those who work with PFAS, have blood concentrations 100s to 1000s times higher than concentrations of those in the general population.

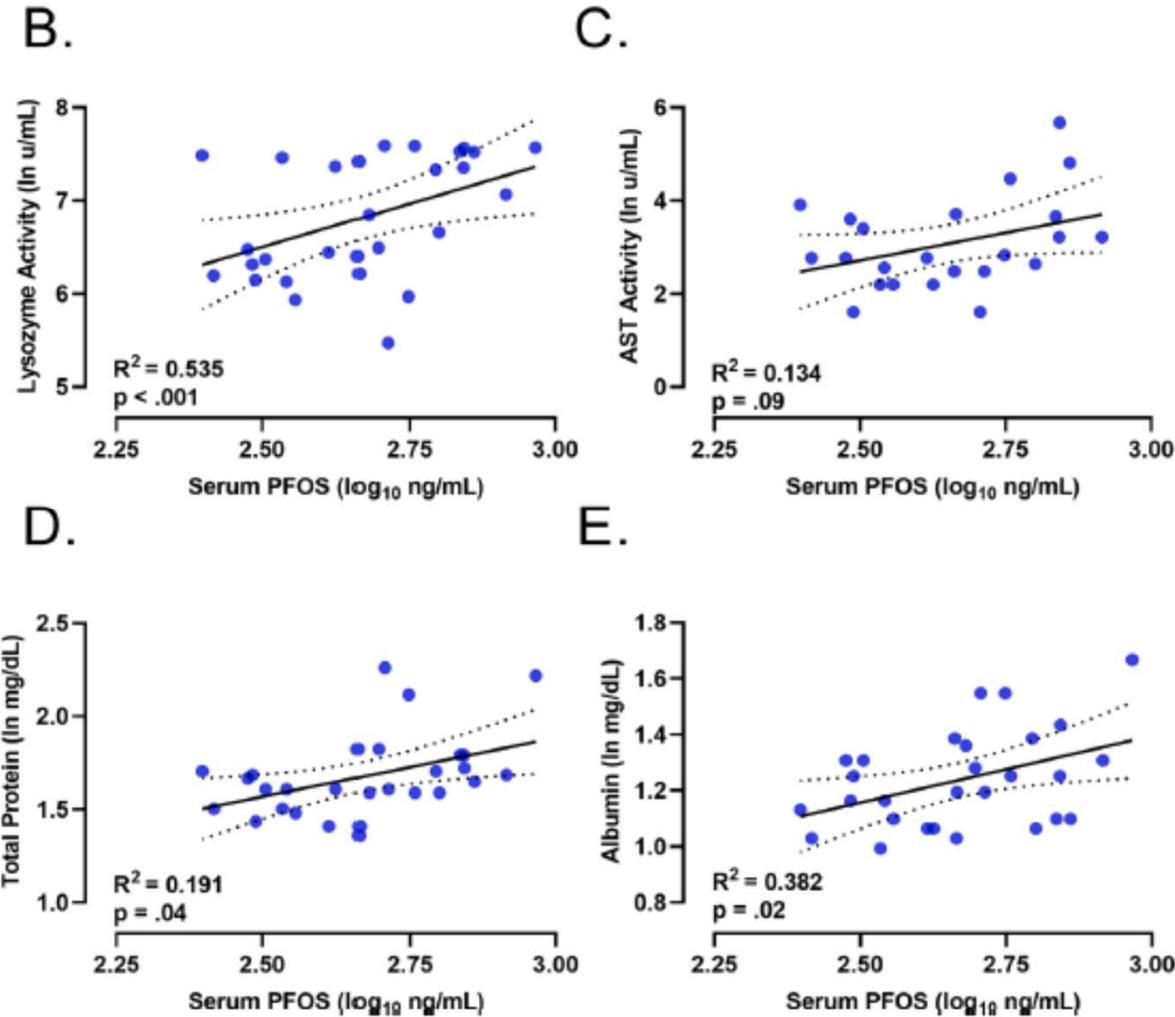


# But PFAS exposure also persists

|               | PFBS (C4) |           | PFHxS (C6)       |            | PFOS (C8)     |            | PFBA (C4)     |           | PFHxA (C6)    |               | PFOA (C8)     |            | PFNA (C9)  |            |
|---------------|-----------|-----------|------------------|------------|---------------|------------|---------------|-----------|---------------|---------------|---------------|------------|------------|------------|
|               | Female    | Male      | Female           | Male       | Female        | Male       | Female        | Male      | Female        | Male          | Female        | Male       | Female     | Male       |
| <i>Rat</i>    | 4.0 hours | 4.5 hours | ? Shorter than M | 16-29 days | 62-71 days    | 38-41 days | 1.0-1.8 hours | 6-9 hours | 0.4-0.6 hours | 1.0-1.6 hours | 2-4 hours     | 4-6 days   | 1.4 days   | 30.6 days  |
| <i>Mouse</i>  |           |           | 25-27 days       | 28-30 days | 31-38 days    | 36-43 days | 3 hours       | 12 hours  | ~1.2 hours    | ~1.6 hours    | 16 days       | 22 days    | 26-68 days | 34-69 days |
| <i>Rabbit</i> |           |           |                  |            |               |            |               |           |               |               | 7 hours       | 5.5 hours  |            |            |
| <i>Dog</i>    |           |           |                  |            |               |            |               |           |               |               | 8-13 days     | 20-30 days |            |            |
| <i>Cattle</i> |           |           |                  |            |               |            |               |           |               |               |               | 19.2 hours |            |            |
| <i>Chick</i>  |           |           |                  |            |               | 15-17 days |               |           |               |               |               | 3.9 days   |            |            |
| <i>Monkey</i> | 3.5 days  | 4.0 days  | 87 days          | 141 days   | 110 days      | 132 days   | 1.7 days      |           | 0.1-0.8 days  | 0.2-1.5 days  | 30 days       | 21 days    |            |            |
| <i>Humans</i> | 28 days   |           | 8.5 years        |            | 4.3-5.0 years |            | 3 days        |           | 32 days       |               | 2.1-3.8 years |            |            |            |

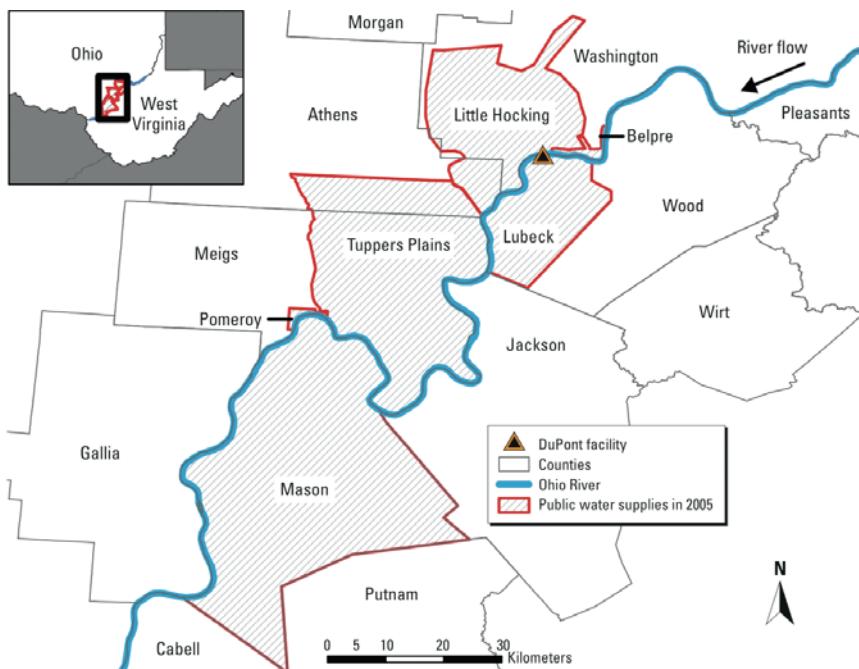
ORE

NHEERL


# PFAS toxicity reported in wildlife

| Species                                                | Summary Of Findings                                                                                                                                                                                                                                            | Reference                                             |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| <b>Sea otter</b><br><i>Enhydra lutris</i>              | Higher PFOS/PFOA concentrations in liver samples found in diseased otters versus nondiseased group                                                                                                                                                             | ( <a href="#">Kannan, Perotta and Thomas 2006 ▶</a> ) |
| <b>Bottlenose dolphin</b><br><i>Tursiops truncatus</i> | Significant positive associations between serum total PFAS concentrations and multiple immunological, hematopoietic, renal, and hepatic function endpoints                                                                                                     | ( <a href="#">Fair et al. 2013 ▶</a> )                |
| <b>Wood mouse</b><br><i>Apodemus sylvaticus</i>        | Significant positive relationship between liver PFOS concentration and hepatic endpoints (relative liver weight, microsomal lipid peroxidation level); significant negative association with serum alanine aminotransferase (ALT) activity                     | ( <a href="#">Hoff 2004 ▶</a> )                       |
| <b>Wild pig</b><br><i>Sus scrofa</i>                   | No significant correlation between PFAS liver concentrations and multiple blood, hepatic, and immunological endpoints, whereas significant correlations were observed for other pollutants (for example, dioxin-like compounds, PCBs, organohaline pesticides) | ( <a href="#">Watanabe et al. 2010 ▶</a> )            |

Note: Refer to [Table 7-3](#) in the separate Excel spreadsheet for toxicological endpoints and values.

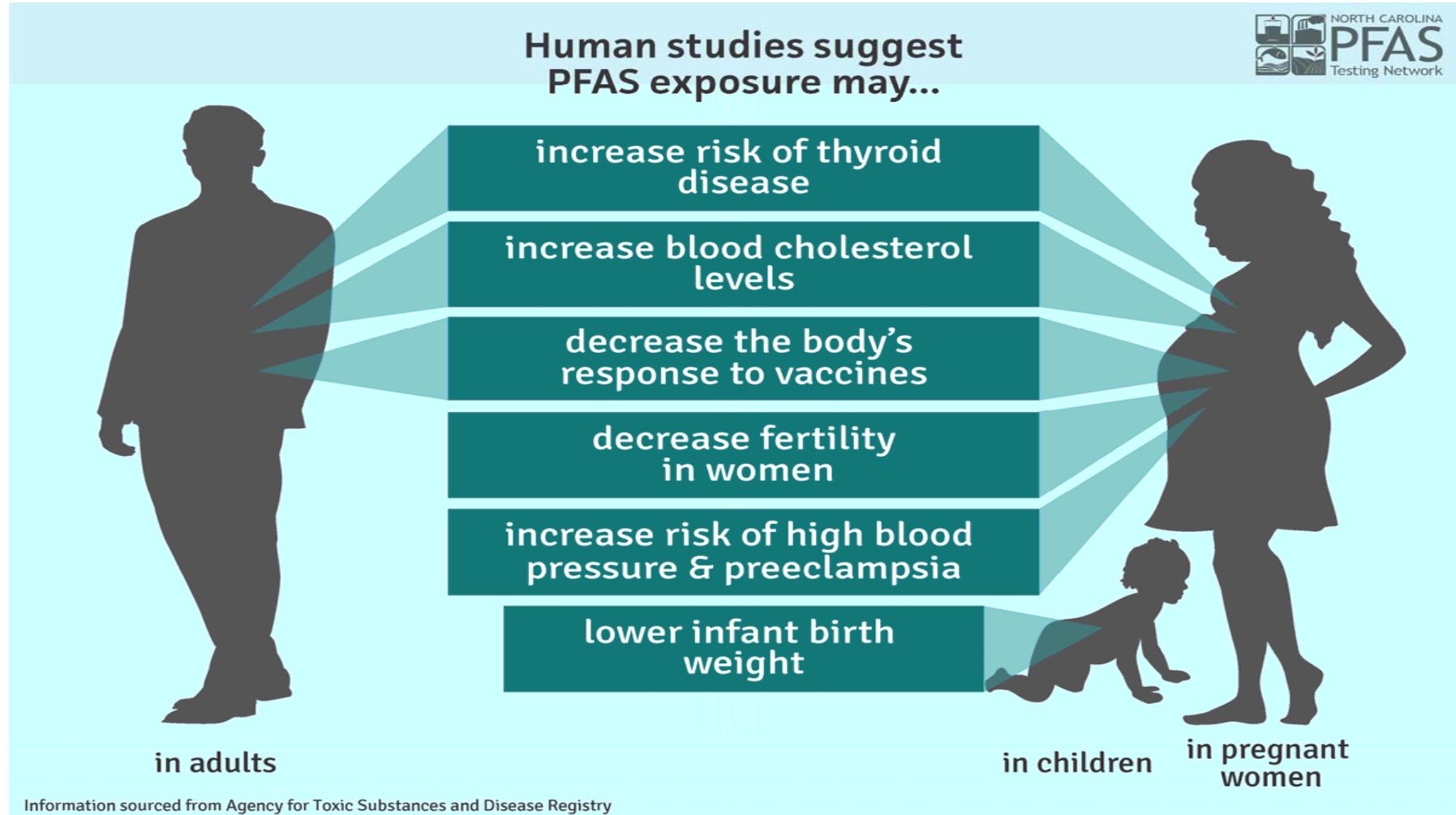

Interstate Technology Regulatory Council (ITRC) summary of available studies of toxicological outcomes in mammalian wildlife.

# PFAS toxicity reported in wildlife – a recent example



Guillette et al. (2020) demonstrated increases in biomarkers for immunotoxicity and liver toxicity with increases in serum PFOS in striped bass from the Cape Fear River of North Carolina, US.

# PFAS health effects from epidemiological studies




## **Probable links for PFOA in this community included:**

Cancer - kidney and testicular  
Diagnosed elevated cholesterol  
Pregnancy-induced hypertension and preeclampsia  
Thyroid Disease  
Ulcerative colitis

*The C8 Science Panel was created by the class action lawsuit featured in the film “Dark Waters.”*

# PFAS health effects from epidemiological studies



# PFAS health effects from epidemiological studies

— High certainty

- - - Lower certainty

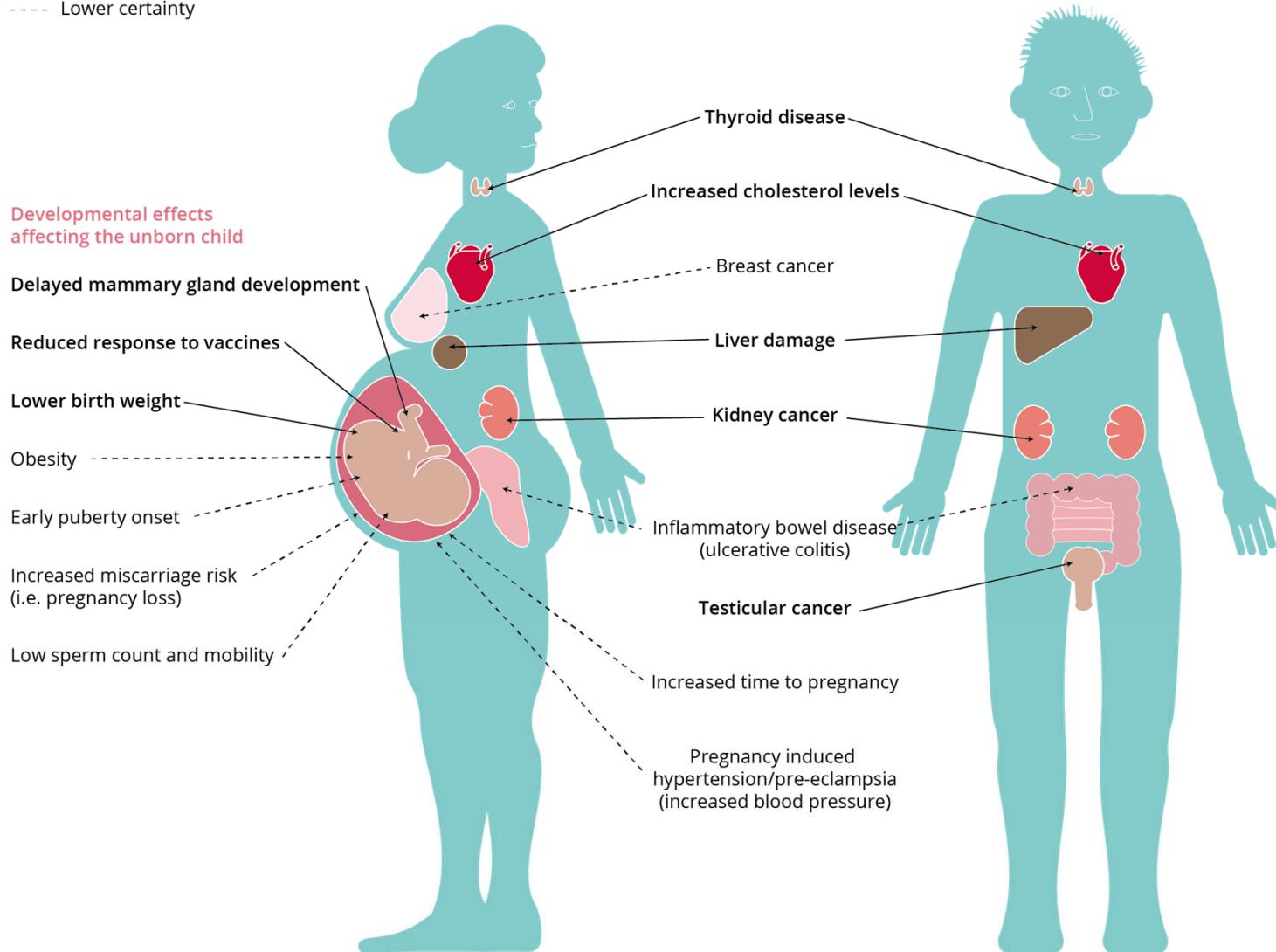



Image source: <https://www.eea.europa.eu/themes/human/chemicals/emerging-chemical-risks-in-europe>

# Multiple lines of evidence for PFAS toxicity



Animal studies suggest  
PFAS exposure is linked to...



damage to the immune  
system

liver damage

birth defects, delayed  
development, and newborn  
deaths

Information sourced from Agency for Toxic Substances and Disease Registry

# Multiple lines of evidence for PFAS toxicity

Rodents exhibit a “tumor triad” (liver, pancreatic, and testicular tumors)

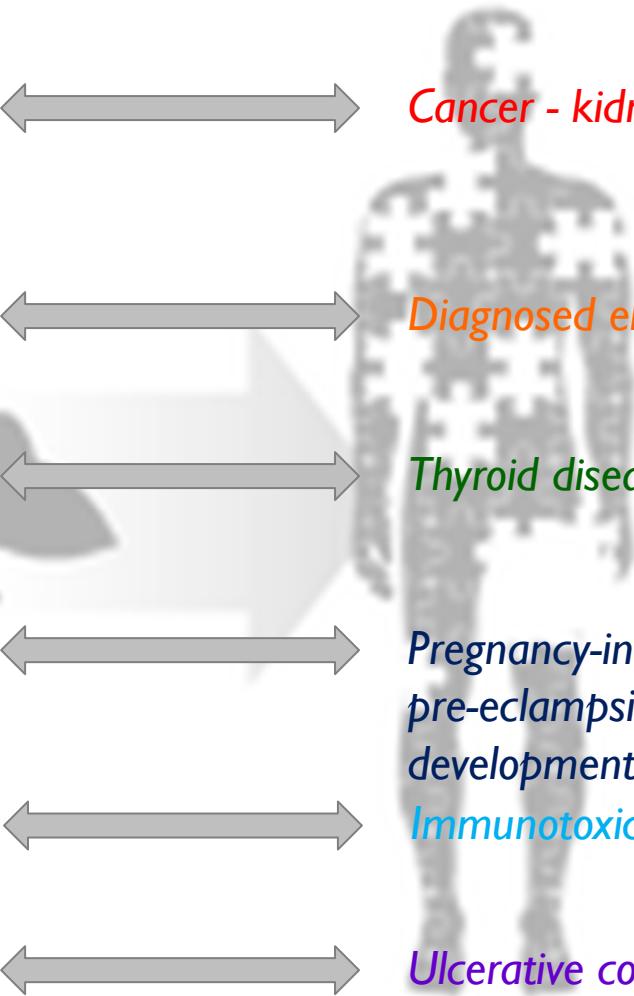
Rodents tend to have decreased cholesterol

Rodents develop changes in thyroid hormone levels

Reproductive & developmental toxicity occurs in rodents

Immunotoxicity occurs in rodents

Autoimmune/inflammatory alterations occurs in rodents


*Cancer - kidney and testicular*

*Diagnosed elevated cholesterol*

*Thyroid disease*

*Pregnancy-induced hypertension & pre-eclampsia & other developmental effects*  
*Immunotoxicity*

*Ulcerative colitis*



# Approaches for public health protection

**Cousins et al. (2020) evaluated strategies for grouping PFAS.**

Main conclusions:

*The P-sufficient approach, based on persistence alone, would be most precautionary.*

*An approach based on common toxicities, modes/mechanisms of action, and elimination kinetics, would be least precautionary.*

| Approaches based on intrinsic properties | Individual approaches <sup>a</sup>                                                           | PFAS grouped                                               | Data requirements                                                                                     | Advantages                                                                                                                   | Limitations                                                                                                                                                                                | Note                                                                                                                                            |
|------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          | P-sufficient approach                                                                        | all PFAS                                                   | none                                                                                                  | easy to understand; simple; for all PFAS                                                                                     | legal basis for its uses under specific regulation may need to be explored                                                                                                                 | here PFAS with persistent transformation products are treated as persistent, according to the identification of PBT/vPvB substances under REACH |
|                                          | According to PBT/vPvB                                                                        | PFAS that are bioaccumulative                              | bioaccumulation potential                                                                             | consistent with existing PBT (and vPvB) paradigms; expandable to a larger range of PFAS                                      | limited to long-chain PFCAs and PFESs now; data intensive; focus on humans/aura; few PFAS-applicable models                                                                                | in silico and non-target tools are being developed                                                                                              |
|                                          | According to PMT/vPvM                                                                        | PFAS that are mobile in water                              | Water solubility, $K_{ow}$ or $K_{oc}$                                                                | easy to understand; addresses the concern of possible drinking water contamination                                           | no commonly agreed criteria; limited data availability                                                                                                                                     | UBA proposed criteria for PMT & vPvM substances under REACH                                                                                     |
|                                          | Polymers of low concern (PLC)                                                                | some fluoropolymers                                        | polymer composition, molecular weight, leachable residuals, reactive groups, particle size, stability | commonly agreed criteria exist                                                                                               | criteria biased to the use phase; may not consider exposure during production & after end of life; different implementations of the OECD criteria in different countries                   |                                                                                                                                                 |
| Approaches that inform risk assessment   | Arrowhead approach                                                                           | specific PFAs(s) + precursors                              | degradation schemes                                                                                   | addresses all exposure sources to specific PFAs(s); potential link to TOP assay                                              | TOP assay not standardised; TOP assay simulates degradation poorly                                                                                                                         |                                                                                                                                                 |
|                                          | Total organofluorine approach                                                                | extractable or adsorbable PFAS                             | none                                                                                                  | relatively fast and cheap measurements; can be used to screen samples to determine if low or high levels of PFAS may present | high uncertainty for risk assessment as unknown which PFAS are represented; inclusion of organofluorine compounds other than PFAS; quantification limits                                   | may be enforced using EOF/AOF measurements                                                                                                      |
|                                          | Simple additive toxicity approach                                                            | from 2 to 20 PFAS, primarily PFAs (under current practice) | toxicity                                                                                              | based on cumulative risk assessment; easily enforceable using target analysis; simple and protective                         | no common procedure to determine the scopes & guideline values; limited to PFAS for which analytical methods & standards available; assumes same endpoints & kinetics; many PFAS neglected |                                                                                                                                                 |
|                                          | Relative potency factor approach                                                             | multiple PFAs                                              | toxicity (including potency), toxicokinetics                                                          | cumulative risk assessment approach that accounts for differences in toxicokinetics & toxic potencies                        | limited to increasing liver size and to PFAs now; while other endpoints may be more important; resource & data intensive                                                                   | high throughput testing methods being explored for potential expansion of the scope                                                             |
|                                          | Grouping only PFAS with similar adverse effects, mode/mechanism of action and toxicokinetics | limited PFAs                                               | toxicity, modes/ mechanisms of action, toxicokinetics                                                 | cumulative risk assessment that is scientifically stringent                                                                  | resource & data very intensive; variabilities of these properties across PFAS not well understood                                                                                          |                                                                                                                                                 |

Image source: Cousins et al. 2020.

## Approaches for public health protection

**Cousins et al. (2020) evaluated strategies for grouping PFAS.**

What has been done where grouping approaches were used?

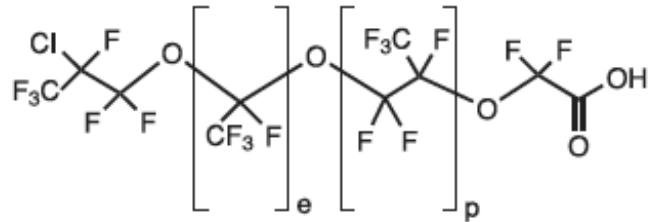
*The least precautionary approach.*

### **Denmark**

Groups 12 PFAS under assumption all are similarly toxic to PFOS

### **Sweden**

Groups 11 PFAS under assumption all are similarly toxic to PFOS


### **Australia, Canada, US**

Group 2 PFAS under assumption of similar toxicity or additive toxicity

# Approaches for public health protection



***But the least precautionary approach becomes less palatable as the number of PFAS grows.***



**Fig. 1. A chloroperfluoropolyether carboxylate (CIPFPECA) identified by nontargeted MS analyses in soil samples from New Jersey.** In the New Jersey samples, perfluoroethyl (e) plus perfluoropropyl (p) groups were observed to range in sum from one to four. The example congener depicted here would be designated (e,p) = 1,1. Isomers likely include an alternative terminal structure of ClCF<sub>2</sub>CF(CF<sub>3</sub>)O- (13, 14) as well as relative positions for the perfluoroethyl and perfluoropropyl groups.

Image source: Washington et al. 2020.

## Approaches for public health protection

**Kwiatkowski et al. (2020) recommended a scientific basis for managing PFAS as a class.**

Main recommendation:

*High persistence, accumulation potential, AND/OR hazards (known and potential) of PFAS studied to date is sufficient justification for treating ALL PFAS as a single class.*

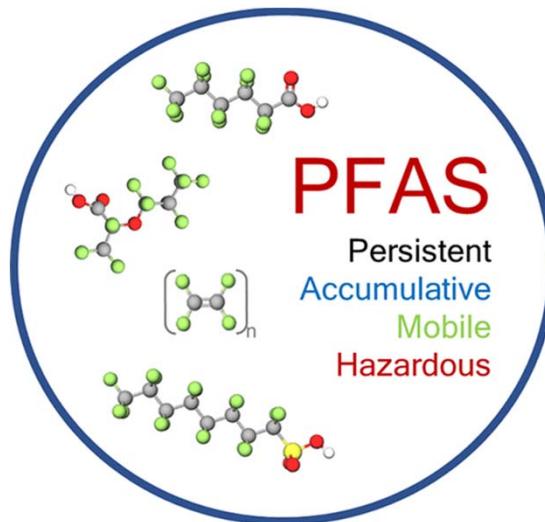



Image source: Kwiatkowski et al. 2020.

# Approaches for public health protection

## ***An essential use approach can support PFAS phase-outs:***

An essential use is a use necessary for health or safety or for the functioning of society and an essential use is a use for which there are no available technically and economically feasible alternatives.

Environmental  
Science  
Processes & Impacts



CRITICAL REVIEW

[View Article Online](#)  
[View Journal](#)



Cite this: DOI: 10.1039/c9em00163h

## **The concept of essential use for determining when uses of PFASs can be phased out**

Ian T. Cousins, <sup>a</sup> Greta Goldenman, <sup>b</sup> Dorte Herzke, <sup>c</sup> Rainer Lohmann, <sup>d</sup> Mark Miller, <sup>e</sup> Carla A. Ng, <sup>f</sup> Sharyle Patton, <sup>g</sup> Martin Scheringer, <sup>h</sup> Xenia Trier, <sup>i</sup> Lena Vierke, <sup>j</sup> Zhanyun Wang <sup>k</sup> and Jamie C. DeWitt<sup>l</sup>

Image source: Cousins et al. 2019.



### **Sources of laboratory funding for PFAS:**

- North Carolina Policy Collaboratory & NC General Assembly
- US EPA/Oregon State University (83948101)
- NIEHS/NC State University (1 P42 ES031009-01)
- NC State University Center for Human Health and the Environment
- Brody Brothers Endowment



### **International collaborators:**

<https://www.pfassciencepanel.org/>

Thank you image from shutterstock.com.

## **References used in presentation:**

Cousins et al. 2020. Strategies for grouping per- and polyfluoroalkyl substances (PFAS) to protect human and environmental health. *Environmental Science Processes & Impacts*. DOI: 10.1039/d0em00147c.

Cousins et al. 2019. The concept of essential use for determining when uses of PFASs can be phased out. *Environmental Science Processes & Impacts*. 21:1803-1815.

DeWitt et al. 2012. Immunotoxicity of perfluorinated compounds: Recent developments. *Toxicologic Pathology*. 40:300-311.

Emerging chemical risks in Europe – ‘PFAS.’ <https://www.eea.europa.eu/themes/human/chemicals/emerging-chemical-risks-in-Europe>.

FluoroCouncil. 2019. Fluorotechnology makes important products for vital industries possible. <https://fluorocouncil.com/wp-content/uploads/2017/02/Fluoro-IG-compressed.pdf>.

Galloway et al. 2020. Evidence of air dispersion: HPFO-DA and PFOA in Ohio and West Virginia surface water and soil near a fluoropolymer production facility. *Environmental Science & Technology*. 54:7175-7184.

Guillette et al. 2020. Elevated levels of per- and polyfluoroalkyl substances in Cape Fear River striped bass (*Morone saxatilis*) are associated with biomarkers of altered immune and liver function. *Environment International*. 136:105358.

Hopkins et al., 2018. Recently detected drinking water contaminants: GenX and other per- and polyfluoroalkyl substances. *Journal AWWA*. 110:13-28.

Interstate Technology Regulatory Council. PFAS technical and regulatory document. <https://pfas-1.itrcweb.org/>.

Kwiatkowski et al. 2020. Scientific basis for managing PFAS as a chemical class. *Environmental Science & Technology Letters*. 7:532-543.

Public Information Brief: PFAS. <https://www.oaklodgewaterservices.org/surface-water/page/public-information-brief-pfas>.

Sunderland et al. 2018. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. *Journal of Exposure Science and Environmental Epidemiology*. 29:131-147.

Washington et al. 2020. Nontargeted mass-spectral detection of chloroperfluoropolyether carboxylates in New Jersey soils. *Science*. 368:1103-1107.